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Chasi-Guided M do es and Related Radiation Losses in

Optical Dielectric VVaveguides with External

Higher Index Surroundings

YASUHARU SUEMATSU, MEMBER, IEEE, AND KAZUHITO I?URUYA

Absfract—Mode filter actions are found theoretically in an optical

dielectric waveguide consisting of a core and a thin cladding layer

which is further surrounded by an external higher index region.

The propagating waves, which are usually considered to be cutoff

modes, can be guided with a small amount of loss under a certain

condition. These waves are defined here as quasi-guided modes.

These modes tend to the guided modes of the guide when the

cladding thickness increases infinitely.

A method is given to estimate the losses. As an example, the

radiation losses are formulated for a symmetric slab waveguide,

and are found to be approximately proportional to the cube of the

mode number of the quasi-guided mode. Therefore, losses of the

quasi-guided modes depend strongly on the mode number.

It is suggested that fibers with large core dkuneters can be used

as quasi-single mode fibers by covering the clad-type multimode

fibers with external higher index surroundings and choosing the

parameters properly.

I. INTRODUCTION

M ULTIMODE dielectric waveguides such as multi-

mode optical fibers are very attractive for the trans-

mission of optical signals because of their larger core

dimension. Therefore, these structures offer improved

handling properties together with smaller scattering loss

due to the irregularities of the boundaries which is in-

versely proportional to the third power of the core di-

mension [1]., On the other hand, in a multimode fiber, the

group velocity dispersion limits the bandwidth and, there-

fore, it is very important to find a mode-dependent

filtering mechanism in this type of multimode dielectric

waveguide.

A transverse index distribution in which the refractive

index of the external layer is higher than the minimum

value of the index at the interior region, seems to be one of

the useful types of index distribution for the transmission

medium, in optical communication systems and integrated
optics, because of its mode-dependent radiation properties.

In relation to the index distribution mentioned above, the

prism coupler has been treated, using the plane wave ex-

pansion met hod. However, the main purpose was the

treatment of excitation problems [2], [3]. Generally

speaking, the propagation and radiation properties, and

especially the mode-dependency of the radiation losses,

are not yet fully known.

This paper is concerned with the propagating modes

and the radiation losses of dielectric waveguides which
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Fig. 1. Transverse refractive index distrib[ltions with external
~~ index surroundings. (a) Axial symmetric guide. (b) Slab

consist of a core and a thin cladding with external higher

index surroundings. Wave propagations along the dielectric

waveguide is analyzed with the aid of expansions in terms

of charact wistic modes. Quasi-guided modes (Q GM’s) are

defined to be linear combinations of the radiation modes

with real continuous propagation constants at finite regions

on the spectrum. These Q GM’S correspond to propagating

modes with attenuation due to the radiations toward exter-

nal surroundings. These modes tend to the attenuationless

guided modes of the guide when the cladding thickness

approaches infinity. As an example of this Q GM analysis,

clad-t ype slab dielectric waveguides with external higher

index surroundings are treated numerically and analyt-

ically. As a result of the analysis, mode-dependency of the

radiation loss is represented quantitatively. Finally, it is

suggested that fibers of large-diameter core ean be used as

quasi-single mode fibers by covering clad-type multimode

fibers with external higher index surroundings.

II. QUASI-GUIDED MODES

Wave propagation along cylindrical dielectric wave-

guldes with transverse refractive index distributions, as

shown in Fig. 1, is considered. It would be possible to

approximate the above-mentioned index distribution by

an external higher index surrounding of finite thickness

under the following conditions. The thickness of the sur-

rounding is assumed to be sufficiently large compared to

the core width, and the outermost surface of the surround-

ing is either rough or absorptive, to prevent reflections of

the radiated light. With the aid of the characteristic mode

expansion, one of the field component of an electromag-

netic wave ~ ( r,z) is represented as

*(r,2) = ~ / L(B) N(B) 2F(r;p) exp ( –jf?z) dfl (1)
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where z is the wave propagation axis and r is a position

vector in a transverse cross section of the guide. Z f

implies both summation and integration over the whole

spectrum of propagation constants 0’s of the real value. It

is assumed that a spatial variation in the transverse direc-

tion of an input field ~ (r,O) is slow enough to be expanded

with only modes of real propagation constants. But this

assumption is considered to be good approximation for

practical cases. N (L?) is a normalization function defined

with respect to the time-averaged Poynting power,

JG

= L?(p – p’), for continuous spectrum

where the integration extends over the entire cross section

c. N(p) can be regarded as the normalized amplitude of

the field in the core region for the radiation modes (see

Appendix II). M is a factor that makes the product

(N(~) F(r;iO )” (M(r;B)N(8)F(r;~) ) a Poynting power
density. An example of this factor will be shown in Section

III. In the case of a discrete spectrum, N(P), M (r;@),

F(r;@), F(r;@), and 6(B – B’) are to be replaced by N,,

M,(r), F,(r), F,(r), and &~, respectively. Degenerate

modes are also required to be orthogonal. Then excitation

factors L(B) (or L,) are determined by input-field dis-

tributions # (r;O), using (1) and (2), as

L(B) = /#(r;O)M(r;B)F(r;@)dr. (3)
o

In the case of dielectric waveguides with external higher

index surroundings as shown in Fig. 1, normalization

functions N (L?) have sharp peaks along the &axis, in the

range of ik < B < lca(k. = (2r/x) ni; ni is the refractive

index). Therefore, in this range the parts of B-spectrum

around these peaks are the dominant contribution to the

integration in (1), and since N(8) varies rapidly, L(P)

and F (r ;D) can be taken out of the integration. Then (1)

may be represented approximately as follows to give the

field around the core of the guide:

#(r;z) Q ~ L,N,@,(r,z) + ~ L(BP) &p(r,z)
r P

(k, < d < h) (k, < @ < IC,)

where % and @(P) are normalized guided and radiation

modes, respectively, having the form of N(~) F ( r ;~) exp

( –j&). X,jmplies the summation of all peaks mentioned

above, and @P is given by

J

i3.t6=

@fl(r,z) = F(r;O,) N(o)’ exp ( –j@z) do. (5)
BP–8P

Once 6Pis sticiently large compared with the width of the

peak, the integrated value is almost independent of the

value & f?P is the propagation constant which gives the

pth peak of N(B) on the p-axis. It is assumed that the

width of the peak is sufficiently small compared with ,&
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Fig. 2. Conceptual scheme for the transition of normalization func-
tion from quasi-guided $0 guided mode. By increasing the rlaclding
thickness, the peaks wdl become sharper.

The propagation properties of 3P are determined almost

solely by the peak-widths of the normalization function

N (/?), whiclh are inherent in the waveguide under con-

sideration. Assuming that &’ is a propagation constant

near &, then the field 6P is represented as follows

(Appendix I):

% = F(r;&/) m{jj”/2 – .?2/4}-’/2 ,

“exp ( —aPz) exp ( –&z), (around core) (6)

where

~p = [(2f — f’2/y~) /fgl/2 (7)

& = p,’ – ff/y’ (8)

and

j = l/N(p)2. (9)

f, f’, and f“ designate the value of the function defined by

(9), and its first and second derivatives at BP’, respectively.

Unless 8,’ is too far from 0,, the propagation constant &

and decay constant aP are almost independent of f?v’, and

& R & The field $, propagates keeping its transverse

field distribution close to the core, but decaying expo-

nentially along the z-axis. From (7) and (9), the following

equation may be derived to estimate approximately the

decay constants from peak-widths of normalization func-

tion:

N(& =t a,) N N(fb) /ti. (lo)

The decay constant a, is approximately equal to half of

the width at points corresponding to l/@values of the

peak of the normalization function N. Then scanning of i?

along the real axis will enable us to determine an from the

width of the peak of N(D). So this method is easily appli-

cable to the guide of very complicated mfractive-index

distribution as shown in Fig. 1 (b). .

Increasing the cladding thickness (d – b) infinitely, the

positions of the peaks of the normalization function tend to

correspond to the propagation constants of the guided

modes of the guide without external higher index surround-

ings and the peak-widths, and, therefore, decay constants

will shrink to zero, as shown in Fig. ~. That is, tlw field

3P tends to become the guided mode in the limit of (d – b)
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a co. ~ example of this transition to the guided mode will

be shown numerically in Section III.

The field @P is a linear combination of radiation modes

around one of the peaks of the normalization function N,

and- forms one 1‘group” propagating with a small amount

of loss. The field at far distances from the core in the

transverse direction can be calculated by (5). However,

in this case, due to the rapid variation of F ( r;~) with ~, it

should be returned back into the integration sign. There-

fore, the fields of QGM’s vanish at the distances far from

the core, as shown in Fig. 5. It forms a quasi-mode which

is independent of the manner of excitation by the input

wave. This loss is dependent on the waveguide parameters

and the peak number. Hence we define the field 6P as the

QGM.’ In investigating wave propagations near the core,

it is effective to consider these new modes QGM.

III. QUASI-GUIDED MODES IN SLAB

WAVE GUIDES

As an example of the analysis developed in the previous

section, Q GM’s in waveguides with transverse index dis-

tributions (shown in Fig. 3) are analyzed. Characteristic

modes corresponding to the spectrum range of % <

~/kO < n, (k~ = 2Tr/k) are derived from wave equations.

In slab waveguides, the factor M is@/ (2qt) for TE, and

0n12/ (2cq.m2(y) ) for TM waves, where ~ stands for per-
meability y. Then the normalization function N(~) is given

as follows (Appendix II) :

[{
N(@) = -

2c0p{3
(Au + BiY-’)2

()+ ~ 2 (AU – BU-1)2 }1
–1/2

(11)

(12)

where

U= eXp {K(d– b)]

Sin (YI b
/

2 (13)

‘[1, for TE waves
~, = 1(ni/nl) 2, for TM waves (14)

1 A QGM as defined here is close to the leaky wave [4]. The half-
width at half-height of the peak of Nz, which gives the decay r,on-
stant due to the radiation loss, is identical to the imaginary part of
the corresponding leaky wave pole [3]. But the field of the leaky
wave increases to infinity with the transverse dist ante, and there-
fore it cannot be excited in its pure form [5]. As for QGM, the field
vanishes with the transverse distance, so that this mode itself can be
considered as a wave carrying finite power. ,

Transverse Axis

Fig. 3. Refractive index distribution of symmetric slab waveg~iide.

where i = 1,2,3 and 4 is O for even modes, and 7r/2 for odd

modes. In the case of U >>1, it is shown by (11) that the

normalization function N (f?) has peaks on the &axis

around propagation constants which make A equal to zero.

For finite values of U, the width of the peak is finite and

the propagation constant & of a QGM is given as the

position of the pth peak of N (6). This position is slightly

different from the root BP’ of A = O, which gives the propa-

gation constant of the guided mode for a guide without an

external surrounding. In the limit of U + co (d -+ m),

the propagation constants of QGM & tend to coincide with

the corresponding propagation constant of guided mode of

the guide with cladding of infinite thickness. In this case

the peak-width and therefore the decay constant of QGM

tend to be zero.

Numerical examples are shown in the following figures.

Fig. 4 shows the normalization function N(@) for the

waveguides with parameters of film thickness 2b =

5A/nl, normalized refractive indexes nZ/nl = 0.99, n,/n* =

0.997, and TE1 mode operation. If the cladding thickness

(d – b) is increased, the peak becomes sharper. At

d = 10A/nl, the excitation factor L (~), which is calculated

by substituting the field distribution of the TE, mode of

the guide with cladding of infinite thickness (d = cc)

into * (ylO), is a sufficiently slowly varying function com-

pared with N(p). Fig. 5 shows the transverse field ampli-

tude distributions at various distances z, for the case of

d = 10~/nl, where EZ corresponds to @z as mentioned in

Appendix II. These distributions are calculated numeri-

cally based on (1). It is shown that the distribution of field

amplitude associated with Q GM which localizes around

the core at z = O, diverges over wider transverse cross

sections as propagating down the waveguide. Far from the

core, for example, at g = 1000k/nl, the field becomes

appreciable for z > 4000h/nl, and it is found from the
calculation of the phase-distributions of Q GM that far

from the core, the wave propagates outward as a plane

wave whose normal inclines by the angle COS–l (fl/ks). It

is also confirmed that the field amplitude decays ex-

ponentially with distance z. The exponential decay con-

stant coincides with that obtained from (10) and Fig. 4.

Therefore, the QGM analysis seems to be sufficiently

precise in the case of d = 10A/nl. Furthermore, exponen-

tial decays are confirmed numerically up to d = 6~/nl, or

L = 1.1 dB/ (100X/nl). For values of d smaller than

6h/nl, the decay will be different from exponential type in

our numerical example.
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Propagation Constant /3

Fig, 4. Normalization function N and excitati{m factor L. The
half-width at the I/@ points with respect to the maximum gives
the decay constant.
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Fig. .5. Propagation properties of quasi-guided mode. (1 = 10k/n,.

For slab waveguides with general index distributions

[61 shown in Fig. 1(b), QGM-analysis will be applied—
using the normalization function N(@) given by

H {7r ()
2

~ @#(–cY;f?) + y 2 @2(–O?’;P)
4wp {1 }

where *Z and @, are x and z components of fields, respec-

tively, and

*=_ld@
z

ICI{ 13y %

(16)

where subscripts 1 and r imply regions of y ~ — d’ and

y > d, respectively. Relations between fields Q.( –d’),

@z( –d’), @z(d), and @,(d) can be established, for example,

using transverse F-matrix method [7]. Furthermore,

QGM’s of waveguides with circular cross section, shown in

Fig. 1 (a), can be analyzed similarly.

IV. RADIATION LOSSES OF QUASI-GUIDED

MODES IhT SYMMETRICAL SLAB

WAVE GUIDES

Radiation loss formulas which relate decay constants

with waveguide parameters will be derived for refractive

index distributions shown in Fig. 3. Using (7), (9), and

(11), and assuming the following approximation conditiorl

U=exp{K(d–b)}>>l (17)

the power 10SSis represented as follows:

L,(dB/m)

= 8.7ap

.exp {–-~d(d — b)}. (18)

(approximation formula JI for Tl? and TM modes)

where w’, K’, and W’ are transverse propagation constants

in the three regions of the waveguide, given by (14)

with P being the root flp’ of the equation A = O. In order

to use (18), it is necessary to calculate I?P’. However, for

TE modes far from cutoff, losses can be calculated

directly from waveguide parameters, with t,he following

approximation formula:

L,(dB/m) = 2 R (Z’,p,li,g)
A/nl

(19)

(approximation formula ~ for TE modes far from cutoff)

where p is the mode number in a system where guided

modes are counted from O followed by the Q Ghl’s up to

m, so that tlhe propagation constant & assumes smaller

values for higher p’s:

$2(1 — Zz)ilj(h. — 1 + 2.7)1/2
R = 440 ——

lz[T(l – X’)’/’ + 1] “

.exp [–2gT(l – :t2)’/’] (20)

where

T = (2A) llzk,b = ~ (n7 + 1) : normalized core width;
.

d–b
9 - —— “ normalized cladding thickness;

b“

7rp+l P+l
x =–——-—=—

2T ?? ’2+1’
(21)

In Fig. 6, radiation losses calculated from approxima-

tion formulas A and B are compared to those from

numerical calculations of N. It is shown that approxima-

tion formula.4 can be applied when there exists one higher

order mode in addition to the QGM under consideration,

while formula B can be applied if there arc two higher

order QGM’s than that of the considered one. The left

ordinate give~s the value of R, with which radiation losses

can be calculated for general parameters, using (19). The



174 IEEE TRANSACTIONS ON MICROWAVE THEORY AND Tl~CHNIQU1,M, JAhTUARY 1975

— Numerical,
– -— Approx. Formula (A) .---Approx. Formula (B)
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Fig. 6. Loss versus normalized core width. Approximation formulas
A and B coincide with the numerical results if there exist, re-
spectively, one and two higher modes in addition to the QGM
under consideration.
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Fig. 7. Mode-dependency of radiation loss. The solid lines are for
the case of h = 1, while the dotted lines are for h = 2.

al

Mode Number p

Fig, 8. Mode-dependency of radiation loss

right ordinates of Figsl 6–8 give the numerical examples

corresponding to the following values of parameters:

X = 1 pm, nl = 1.5, A = 1 percent.

Fig. 7 shows mode-dependencies of radiation losses in

the case of h = 1 and 2. In the case of h = 1, the indexes

of the core and the external surrounding are the same.

As an example, at g = 0.4, for TEO, TE1, and TEs. modes,

radiation losses are 2, 16, 3 X 10s dB/km, respectively.

Especially at lower order modes, radiation loss formula is

represented approximately for h = 1, T >>1, X2 <<1 as

follows :

A
—exp {–2gT) (p + 1)3. (22)Lp (dB/m) = 280 ~4k/nl

As shown in Fig. 8, in the case that h< 1, i.e., index n3

of the external surrounding is lower than that of the core,

no loss transmission, up to a desired order mode and high

losses for the remaining higher order modes, is possible

by adjusting the value of h. On the other hand, in the case of

h > 1, the loss is not so sensitive to the index n, of the

external surrounding.

As the normalized refractive index difference A is small

compared to unity, the previously mentioned numerical

results may be applied also to TM modes.

Radiation losses in a waveguide which has a rectangular

cross section core of dimensions 2a and 2b along the x

and y axes, respectively, can be estimated approximately

by separating eigenfunctions into two functions of trans-

verse axes x and y. In this case, the losses are represented as

the summation of CYPZ,and 0#, where for example, aPz is

the pth QGM loss of the slab waveguide which is given

by b -+ cc and, therefore, can be calculated as mentioned

earlier.

Because of strong mode dependencies of the loss, the

multimode fibers can be used as fibers which carry only

a few lower order modes. Therefore, bandwidths are

broadened by covering clad fibers with, external higher

index surrounding. Besides the properties mentioned

above, external higher index surrounding optical fibers

are considered to have the following merits, due to their

large core diameters; low scattering losses caused by

boundary irregularities, large light acceptance areas to-,

gether with improved connection losses. But the light

acceptance angle becomes critical. The external higher

index surrounding optical fibers may be used as homo-

geneous, and lump-loaded lines.

Silica-core fibers with outer jackets of fused silica which

serve to strengthen and protect the waveguide have been

reported previously [8]. For example, by reducing the

cladding thickness of waveguides to desired values, the

external higher index surrounding optical fibers mentioned

above can be realized.

V. CONCLUSION

Propagation modes in dielectric waveguides with ex-

ternal higher index surrounding are formulated. The

quasi-guided modes which propagate with radiation decay

are defined as linear combinations of real continuous

radiation modes.

Radiation loss properties of clad-slab waveguides are

analyzed, and it is revealed that remarkable mode-

dependency exists in this loss mechanism. It is found that

because of such mode-dependencies of losses, multimode

fibers can be used effectively as single mode fibers and

therefore with broadened bandwidths by covering clad

fibers with external higher index surroundings.
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APPENDIX I

Equation (5) is calculated as

/

Pp’+ap

N (/?) 2exp (---jDz) dfl
@p’-8p

-/

exp [–j (P – &’) 2] exp [–j@P’z]

- ~+f’(~ – &’1 +.f”(s – %)’/2dp

! exp ( —~w)
. dv

_: v’ + (2f – f’/.)’) /f”
(23)

where the arguments of j, f’, and f“ are @n’. Equations

(6)-(@ are obtained, if the above integration is per-

formed.

APPENDIX II

A transverse field component +. is represented as

follows: in the braces {}, the upper line is applied to TE

waves, while the lower line is applied to TM waves:

= iV(~)F(y;D) exp ( –j@.z). (24)

Substituting (24) into the wave equation, the eigenvalue

equation for F (y ;~) is derived. The eigenfunctions

F (y ;@), whose eigenvalues belong to the range of koz%z <

~2 < k02n82, are given as follows. As the refractive index

distribution is symmetric, only the region of y k 0 is

considered:

1Aexp{K(y –b)]+Bexp {– K(y–~11,
F(y;@) = (25)

11.b~y~d”

From the boundary conditions,

{ ()
1/2

C = (A U+BU-1)2+ :2 2 (A U–BiJ-i)2
}

(26)

( )?3<’ A U + B U–l
+(~) = tan-’ — (27)

K{z AU — BU–~

and other parameters are defined in (12) – ( 14). Using

the wave equation and the continuities of F and (l/f).

(dF/13y) which are proportional, respectively, to .E and z

components of the field at the boundaries, the integral

in (2) is calculated as follows:

[ 1aF(y;~)p(y;y) _ ~(y;p) @’(y;~;)m. ——
ay tly _m “

(28)

Substituting (25) into (2S), the right-hand side of (28) is

(7r73/ic0pf3) c% (B – p’). (29)

From (2), (29), and (26), (11) is obtained.
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